
IBM Java 6.0.1 in zEnterprise
Technology Update

Session 09769

Ken Irwin, IBM GTS, Poughkeepsie, New York
Marcel Mitran, IBM SWG, Markham, Canada

Theresa Tai, IBM STG, Poughkeepsie, New York

IBM J9 2.6 Technology Innovation Highlight
and z/OS Value-add

 IBM Strategy Initiative on Java

 IBM J9 2.6 Technology Innovation Highlight

 z/OS value-add

 The newly announced z/OS V1.13 Batch Runtime

 Maximizing zAAP, zIIP, and zAAP on zIIP Investment

 IBM Java Roadmap and Future

 SDK V6.x, V5.x and V1.4.2 Currency

 System zEnterprise z196 New Workload Video

 http://www.centerline.net/review/#/3332_B

IBM and Java

 Java is critically important to IBM
 Fundamental infrastructure for IBM’s software portfolio

 WebSphere, Lotus, Tivoli, Rational, Information Management (IM)

 CICS, IMS and DB2

 IBM is investing strategically for Java in
Virtual Machines
 As of Java 5.0, single JVM support (JME, JSE, JEE)

 New technology base (J9/TR Compiler) on which to deliver
improved performance, reliability, serviceability

 IBM also invests in, and supports public
innovation in Java
 Eclipse, Apache (XML, Aries, Derby, Geronimo, Harmony,

Tuscany, Hadoop …)

 Broad participation in relevant open standards (JCP, OSGi)

IBM J9 2.6 Technology Innovation
System zEnterprise 196 and Java6.0.1

 Leveraging 70+ new HW instructions

 HW Optimization Technology for Java

 Reducing pressure on instruction cache and data cache

 New architectural facilities designed for scalability, and concurrency

 General optimizer and codegen improvements

 New GC Balanced Policy for large heap-intensive workloads

 Significant just-in-time (JIT) compiler performance enhancements

 z/OS Java Unique Security Enhancements

 Integrated Cryptographic Service Facility (ICSF) exception handling

 New RAS features and new signal handling capability

 Enhancements to JZOS

It’s about performance and further improve the economics of running
mission critical workloads on zEnterprise

Executive Summary

J9 R2.6 Virtual Machine
 Significant enhancements to JIT

optimization technology

 z196 exploitation of instructions and
new pipeline

 New Balanced GC policy to reduce
max pause times

z196 and Java6.0.1: Engineered Together

 Up-to 2.1x improvement to Java throughput

 Reduced footprint

 Tighter integration with z/OS facilities

 Improved responsiveness in application
behavior

Performance
 2.1x improvement to multi-

threaded workload

 1.93x improvement to CPU-
intensive workload

z/OS Unique Enhancements
 JZOS 2.4.0

 z/OS Java unique security
enhancements

Java Execution Environments
and Interoperability

 IBM Java Execution Offerings

 Transactional/Interactive
• WebSphere for z/OS (WAS z/OS)

• WebSphere Process Server for z/OS
(WPS) for SOA BPM

• JCICS

• IMS Java

• DB2 Stored Procedures

 Batch Oriented
• WebSphere Compute Grid (WAS-CG)

• WAS/JEE runtime extensions

• JZOS component of z/OS SDK
• JES/JSE-based environment

Open Source or non-IBM vendor
Application Server and
Frameworks

 Tomcat, JBoss

 iBatis, Hibernate, Spring

 Ant

 COBOL/Native Interoperability

 COBOL Invoke maps to JNI

 RDz and JZOS** have tooling to
map COBOL copy books to Java
classes

 JCICS

 IMS Java, JMP/JBP

 WAS CG, WOLA

 etc
* See http://www-01.ibm.com/common/ssi/cgi-bin/ssialias?subtype=ca&infotype=an&supplier=897&letternum=ENUS211-252

** Alphaworks only, and hence currently un-supported

Capitalize on Pre-existing Assets, Artifacts, Processes,
Core Competencies and Performance Strengths.

z/OS – System z Java Extensions

All SDKs support the ‘standards’, Java on z/OS
extends the SDK
Access to z/OS services
Access to all types of data
Access under control of z/OS security mechanisms
 Integration into existing operational infrastructure

Services available in JEE and JSE environments under the

restrictions of the container.

SDK
z/OS

Extensions

SDK
Base

Function

System specific extension allow you to write robust middleware and
applications that integrate with traditional z/OS operating environment
Allow for maintaining platform independent design development.
Platform specific implementations when required
Allows for operational and resource optimization

e.g. JAAS wrapper of SAF (RACF, ACF2, or TopSecret), Traditional OS dataset
access, Cryptographic hardware (Cards and CPACF), z/OS Console (modify and
messages), z/OS system logger, JES job submission, DFSORT, SMF, etc.

The New z/OS Batch Runtime Environment

 z/OS V1.13 "real-time batch" support

 A new z/OS base component

 Enable concurrent batch and online data access

 Provides the framework for
• Java-to-COBOL interoperability

• Transactional updates to DB2®

• Sharing database connections between Java and COBOL

 New Java-COBOL interoperability capabilities are designed
to enable re-use valuable COBOL assets by developing new
and/or enhancing existing batch applications with Java

 Example - use Java subroutines directly in lieu of Java stored
procedures

 Leverage Specialty Engine zAAP

Getting the Most out of
IBM zAAP, zIIP, zAAPzIIP with zEnterprise

 Significantly more productive with zEnterprise class
of processors

 You should expect lower utilization on the same workloads

 Additional Performance and Throughput Gains with z196 and
the new z114

 z/OS Management Facility (z/OSMF) exploitation of
zAAP and zIIP (zAAPzIIP) engines

 Parts of z/OSMF use the z/OS CIM Server

 Java Workloads eligible for zAAP, or zIIP (with the zAAP on zIIP
capability introduced with z/OS V1.11)

 New Batch Runtime with z/OS V1.13

IBM Java Road Map

Page Intentionally Left Blank

IBM Java SDKs Currency

 Java Technology Edition V6.0.1 Build Level April 19, 2011 for z/OS
 31-bit and 64-bit SDK IBM J9 2.6 VM, a new level of JZOS (2.4.0),

enhancements to z/OS Java security, and exploits z196 instructions. The
existing Version 6 Release 0 Modification 0 remains orderable and in service

 31-bit - PTFs UK68991 and UK68998 / APARs PM40891 and PM40892

 64-bit - PTFs UK69000 and UK69001 / APARs PM40894 and PM40895

 Java Technology Edition V6.0 Build Level June 25, 2011 for z/OS
 31-bit - PTF UK65180/APAR PM33607/SDK6 SR9 FP1

 64-bit - PTF UK65285/APAR PM33609/SDK6 SR9 FP1

 Java Technology Edition V5.0 Build Level June 27, 2011 for z/OS

 31-bit - PTF UK69795/APAR PM43607/SDK5 SR12 FP5

 64-bit - PTF UK69796/APAR PM43609/SDK5 SR12 FP5

 Java Technology Edition V1.4 Build Level March 3, 2011 for z/OS
 PTF UK66018/APAR PM35678/SDK1.4.2 SR13 Fixpack 9

 No longer orderable

 Has been withdrawn from Service effective September 30, 2011

IBM Java Performance on zEnterprise

JVM Architectural Overview

Java Application CodeProfilersDebugger

Trace & Dump Engines

Java Native Interface (JNI)

Harmony

Classes

JSE6

Classes

JSE5

Classes

JVMTI User
Natives

GC / JIT / Class Lib. Natives

Core VM (Interpreter, Verifier, Stack Walker)

Port Library (Files, Sockets, Memory)

Thread Library

PPC-32
PPC-64

AIX

zArch-31
zArch-64

x86-32
x86-64

zArch-31
zArch-64

PPC-32
PPC-64

x86-32
x86-64

z/OSWindowsLinuxOperating
Systems

Java Runtime
Environment
e.g. J9 R26

Java API
e.g. Java6

User Code

= Core VM

= VM-aware

= Java Platform API

= User Code

Java 6.0.1:

• Also referred to as Java6 R26, ships with WAS8 across platforms, or standalone on z/OS

• Fully compatible/compliant Java6 (JSE6)

• Includes new J9 R26 JRE (replacing J9 R24 in Java6.0.0)

• Transparent z196 and new optimization exploitation

• New balanced GC policy

IBM Java Runtime Environment

 IBM’s implementation of Java 5 and Java 6 are built with IBM J9
Virtual Machine and IBM Testarossa JIT Compiler technology

• Independent clean-room JVM runtime & JIT compiler

 Combines best-of breed from embedded, development and server
environments… from a cell-phone to a mainframe!

• Lightweight flexible/scalable technology

• World class garbage collection – gencon, balanced GC policies

• Startup & Footprint - Shared classes, Ahead-of-time (AOT) compilation

• 64-bit performance - Compressed references & Large Pages

• Deep System z exploitation – z196/z10/z9/z990 exploitation

• Cost-effective for z - zAAP Ready!

 Millions of instances of J9/TR compiler

IBM Testarossa JIT
Deep System z Exploitation

Out-of-Order/Super-scalar Instruction Scheduler
 z10/z9/z990 are in order superscalar dual pipelines, can dispatch up

to 3 instrs/cycle

 z196 pipeline is OOO, permits 3 inst/group

Platform Tuned Optimizations
 idiom recognition, dynamic literal pool, etc

New Hardware Facility Exploitation
 z196: high-word, non-destructive, interlock,

conditional load/store

 z10: traps, compare-and-branch, pre-fetch,
Decimal Floating Point, etc

 z9: extended immediate support

 z990: long displacement support

IBM J9 2.6 and z196

J9 R26: JRE for z196
 Reducing pressure on the data/instruction cache

 Enables better exploitation of new OOO compute bandwidth

 Mitigates effects of cache latencies for leveraging core speed

 Concurrency improvements
 Better scalability

 General optimizer and codegen improvements
 Reduced path-length

z196: Hardware for Java
 New Out-Of-Order pipeline design

 New larger cache structure

 Higher clock speed (~5.2GHz)

Performance on z/OS:
CPU-Intensive Benchmark

93% Aggregate
improvement

 14% Java 6.0.1
improvement

 70% Hardware
improvement

(Controlled measurement environment, results may vary)

Performance on z/OS:
Multi-threaded Benchmark

2.1x Aggregate
improvement

 16% Java 6.0.1
improvement

 56% Hardware
improvement

 17% z/OS 1.12
improvement**

(Controlled measurement environment, results may vary)

**using IEASYSxx new option TIMESLICE=64

J9R26

J9R24

z/OS Java SDK 6.0.1 Performance:
64 Bit Multi-threaded Benchmark

2.17x Aggregate
Software
improvement

 16% Java 6.0.1
improvement

 39% Java 6 SR8
versus
Java 6 GM
improvement

 35% Java 6 GM
versus
Java 5 SR5

(Controlled measurement environment, results may vary)

J9R26

J9R24

J9R23

z/OS Java SDK 6.0.1 Performance
Aggregate HW and SDK Improvement z10, z196, Java6 to Java6.0.1

~7x

Improvement
from z10, z196,
Java6 and
Java6.0.1

(Controlled measurement environment, results may vary)

z/OS Multi-Threaded 64 Bit Java Workload

0

10

20

30

40

50

60

70

80

90

1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Threads

T
h

ro
u

g
h

p
u

t

z196 SDK 6.0.1
J9 2.6 LP CR

z10 SDK 6 SR4
J9 2.4 LP CR

z10 SDK 6 GM
J9 2.4

z9 Java 5 SR5
J9 2.3

J9R26

J9R24

J9R23

Note: z9 (J9 R23) is the base for the aggregated HW and SDK performance improvements

Performance – IMS JMP

IMS JMP ETR Improvements

Java5, Java6 and Java601

3900

6992
7518

191

608

930

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Java 5 (2009) Java 6 (2010) Java 6.0.1

Java Release (year)

T
h

ro
u

g
h

p
u

t

(b
ig

g
e
r

is
b

e
tt

e
r)

zAAP

CP

(Controlled measurement environment, results may vary) z196™ – z/OS V1.12

81%

11%

2 GCP + 2 zAAP

J9R26J9R24J9R23

Comparing Java Throughput on CICS 4.2 with
CICS 4.1

 CICS 4.2 JVMPOOL
and JVMSERVER use
64-bit Java 6.0.1
relieving 31-bit storage
constraint

 ~17% improvement to
throughput with CICS
4.2/Java 6.0.1

 JVMSERVER slightly
more expensive than
JVMPOOL in CPU

usage but requires
less memory

 All configurations
scale well

Throughput for Compure Intensive Benchmark

0

5000

10000

15000

20000

25000

30000

35000

40000

0 20 40 60 80

threads or TCBs

th
ro

u
g

h
p

u
t

(t
ra

n
s

p
e

r
s

)

4 .2 JVMPOOL

4.2 JVMSERVER

4.1 JVMPOOL

J9R26

J9R24

100%

143%

164%

100%

143%

176%

0%

25%

50%

75%

100%

125%

150%

175%

200%

Version 7 on z10 Version 7 on z196 Verison 8 on z196

R
e

la
ti
ve

T
h

ro
u

g
h

p
u

t

WAS on z/OS Version 8 on z196 Hardware
DayTrader 2.0

Local Data Base

Remote Data Base

Performance on z/OS: WAS on z/OS

(Controlled measurement environment, results may vary)

 z196 hardware measured 43% more throughput for local and remote database configurations

 Version 8 improved throughput of 2-tier configurations by another 15% for an aggregate benefit of 64%

 Version 8 improved throughput of 3-tier configurations by another 23% for an aggregate benefit of 76%

J9R26J9R24J9R24

Performance on z/OS: WAS on z/OS

(Controlled measurement environment, results may vary)

WAS on z/OS Version 8 on z196 Hardware

Web Services

100%

134%

180%

100%

140%

164%

0%

25%

50%

75%

100%

125%

150%

175%

200%

Version 7 on z10 Version 7 on z196 Verison 8 on z196

R
e
la

ti
v
e

T
h
ro

u
g
h
p
u
t

3k/3k Payload

10k/10k Payload

 z196 hardware measured 34% more throughput for small payload sizes (3kin/3kout) and 40% more for
typical payload sizes (10kin/10kout) than z10 hardware

 Version 8 throughput improved over Version 7 by another 34% with the 3k/3k payload and 17% with the
10k/10k payload for and aggregate hardware and software benefit of +80% and +64% respectively

• Improved JAXB parsing

J9R24J9R24 J9R26

Performance on z/OS: WAS on z/OS

(Controlled measurement environment, results may vary)

WAS on z/OS Version 8

Startup Time and Memory Footprint

100%

78%

92%
95%

0%

25%

50%

75%

100%

125%

Version 7 Elapsed Time CPU Time Memory Footprint

 Version 8 server startup time has been reduced by 22%, in elapsed time and 8% in CPU time compared
to Version 7

• Larger shared class cache reduced class load times
• Optimized annotation scanning
• Only delegate class loading to the JDK class loader instead of all class loaders for JDK classes

 Version 8 memory footprint has been reduced by 5%
• Reductions in JVM native memory as well as class memory

J9R26 J9R26 J9R26J9R24

Websphere Application Server (WAS)
DayTrader Improvements

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Throughput Start-up Elapsed Time Start-up CPU Tim e

R
e
la

ti
v

e
Im

p
ro

v
e
m

e
n

t

W AS6.0 Normalized W AS 6.1/SDK5 vs. W AS 6.0/SDK1.4.2

W AS 7/SDK6 vs. W AS 6.1/SDK5 W AS8/SDK601 vs. WAS7/SDK6

Performance – WAS on zOS
(WAS6.0 - WAS6.1 - WAS7.0 - WAS8.0 DayTrader on z/OS)

Bigger is better
Smaller
is better

Smaller
is better

(Controlled measurement environment, results may vary)

J9R26

J9R24

J9R23

Performance on z/OS: WAS on z/OS

(Controlled measurement environment, results may vary)

History of WebSphere on z/OS Hardware/Software Performance

1.0

1.6

2.2

3.1

3.9

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Version 6.1 on z9 Version 6.1 on z10 Version 7.0 on z10 Version 7.0 on z196 Version 8.0 on z196

A
g
g
re

g
a
te

P
e
rf
o
rm

a
n
c
e

Hardware Improvement

Software Improvement

+57%

+43%

+40%

+23%

 This chart shows a history of improvements made from zSeries hardware (from z9 to z196) and software (from V6.1 to
V8.0). The data is from measurements done using the DayTrader EJB workload.

 The chart shows an aggregate performance improvement of almost 4x moving from WAS V6.1 on a z9 to
WAS V8.0 on a z196.

 The hardware component of this increase is about 2.25x (1.57 x 1.43)

 The software component is about 1.72x (1.40 x .123)

J9R23J9R23 J9R24 J9R24 J9R26

z/Linux Java6 R26 Performance:
64 Bit Multi-threaded Benchmark

(Controlled measurement environment, results may vary)

Linux on z-multithreaded 64 Bit Java workload

12-Way System z196

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

1 2 4 6 8 10 12 14 16 18 20 22 24

Threads

T
h

ro
u

g
h

p
u

t

z196 SDK 6 FP1
J9 2.6 LP CR

z196 SDK 6 SR8
J9 2.4 LP CR

z196 Java 6 GM
J9 2.4

z196 SDK 5 SR5
J9 2.3

2.7x Aggregate
Software
improvement

 42% Java6R26 vs
Java6R24
improvement

 42% Java6R24 SR9 vs
Java6R24 GM

 35% Java 6 GM versus

Java 5 SR5

J9R26

J9R24

J9R23

Performance – WAS8.0 on zLinux

(Controlled measurement environment, results may vary)

WAS on zLinux Version 8 on z196 Hardware

DayTrader 2.0

100%

137%

160%

0%

25%

50%

75%

100%

125%

150%

175%

200%

Version 7 on z10 Version 7 on z196 Verison 8 on z196

R
e
la

ti
v
e

T
h
ro

u
g
h
p
u
t

Remotel Data Base

 Upgrading from z10 to z196 improved throughput by 37% using our DayTrader 2.0 EJB benchmark.

 Additionally, upgrading to WAS V8.0 improved performance by another 17%. This increase is a result of
improvements to the following areas:

 JVM and JIT optimizations

 OpenJPA code paths

 The combine hardware and software improvement is 60%.

J9R24J9R24 J9R26

Performance – WAS8.0 on zLinux

(Controlled measurement environment, results may vary)

WAS on zLinux Version 8 on z196 Hardware

Web Services

100%

115%

139%

100%

135%

169%

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

Version 7 on z10 Version 7 on z196 Verison 8 on z196

R
e
la

ti
v
e

T
h
ro

u
g
h
p
u
t

3k/3k Payload

10k/10k Payload

 Upgrading from z10 to z196 improved throughput by as much as 35% using our SOABench webservices
benchmark (15% for the 3k/3k payload and 35% for the 10k/10k payload).

 Additionally, upgrading to WAS V8.0 improved performance by another 21% for the 3k/3k payload and 25%
for the 10k/10k payload. This increase is a result of improvements to the following areas:

 JVM and JIT optimizations

 JAXB fastpath optimizations

 The combine hardware and software improvement is 39% for the 3k/3k case and 69% in the 10k/10k case.

J9R24J9R24 J9R26

IBM Java Consumability and Serviceability

R601 z/OS Unique functional enhancements

JZOS 2.4.0

 Enables the submission of jobs to the MVS internal reader
and retrieval of the submitted JOB ID

 Text, record, and binary JCL will be supported.

 The MVS internal reader attributes LRECL, RECFM, and
Class will be configurable from this Java class.

 Enhances the zlogstream class to support

 IXGBRWSE (read) and IXGDELT (delete)

 InputStream/OutputStream Java wrappers

 Added the method ZFile.readDSCBChain() to support

 Reading all of the DSCBs associated with a dsn/volume

 Extended access volumes (Format-8 and Format-9
DSCBs.)

 Adds a new package com.ibm.jzos.wlm with selected z/OS
Workload Manager (WLM) APIs

 Removes all JRIO code dependencies

 JRIO is deprecated in z/OS V6.0.1 products

R601 z/OS Unique functional enhancements

z/OS Java Unique Security Enhancements

 IBMJCECCA provider support for AES Secure Keys

 RAS: Provide Enhanced ICSF Exception Handling in
IBMJCECCA

IBM J9 2.6 Technology Enhancements:
Garbage Collection: Balanced Policy

Improved responsiveness in application behavior

 Reduced maximum pause times to achieve more consistent behavior

 Incremental result-based heap collection targets best ROI areas of the heap

 Native memory aware approach reduces non-object heap consumption

Next generation technology expands platform exploitation possibilities

 Virtualization – Group heap data by frequency of access, direct OS paging
decisions

 Dynamic reorganization of data structures to improve memory hierarchy
utilization (performance)

Recommended deployment scenarios

 Large (>4GB) heaps

 Frequent global garbage collections

 Excessive time spent in global compaction

 Relatively frequent allocation of large (>1MB) arrays

Input welcome: Help set directions by telling us your needs

IBM J9 2.6 Technology Enhancements:
GC Policy Changes

Effective with Java R601

 Xgcpolicy: gencon is the default GC Policy

 Applies to both 31- and 64-bit JVMs

Benefits

 Long-lived objects are handled differently than short-lived objects

 Applications with many short-lived objects can see shorter pause times
(better performance) while maintaining good throughput

Considerations

 Assess performance against current gcpolicy in use

 Consider returning to previous gcpolicy if needed

Other changes

 The subpool policy has been removed

 -Xgcpolicy:subpool is now an alias for -Xgcpolicy:optthruput

IBM J9 2.6 Technology Enhancements:
GenCon Policy Tuning

Gencon Defaults

 Default split is 25% newspace, 75% oldspace

 Both new and old space can grow and shrink dynamically

Old and New space size is definable

 -Xmns / -Xmnx

 -Xmos / -Xmox

Tuning Considerations

 In a fixed heap (ie -Xms = -Xmx), both areas are fixed in size

 Too small a nursery can cause
too many local GCs
premature tenuring >> more frequent Global GCs

 Too large a nursery can cause
expensive local GCs
smaller tenure space >> more frequent Global Gcs

 The tuning goal is to minimize the object survival rate

 If the rate is consistently too high, consider another policy

 Consider using the GCMV tool to help

IBM J9 2.6 Technology Enhancements:
RAS Enhancements

JVM Dump Support

 Environment Variables and ULIMITs included in javacores

 Native memory usage counters in javacore and from core dumps via DTFJ

 Multi-part TDUMPs on zOS 64

JVM Trace Support Improvements

 -Xtrace

More internal tracepoints created
New javastack and ceedump trigger points added

JVM Logging Improvements

 -Xlog

New with J9 2.6 all JVM error messages (JVMxxxxnnnE) plus specific information
messages JVMDUMP006I, JVMDUMP032I and JVMDUMP033I are written to the
system log by default.
The –Xlog option has been enhanced to provide controlled selection of
Message routing to the system log.

IBM J9 2.6 Technology Enhancements:
RAS Enhancements: javacore contents

Environment Variables

--

_CXX_WORK_SPACE=(32000,(150,150))

_CXX_PMSGS=EDCPMSGE

MAIL=/usr/mail/CHAMBER

_CC_CNAME=CCNDRVR

PATH=/u/sovbld/bldsys:/usr/local/perl/bin:/u/java/bin:/bin:/usr/sbin:/u/cham
b....

_C89_WORK_SPACE=(32000,(150,150))

_CXX_WORK_UNIT=SYSDA

_CXX_INCDIRS=/usr/include //DD:SYSLIB
//'PP.ADLE370.ZOS180.SCEEH.NET.H‘………

_C89_PNAME=EDCPRLK

TMPDIR=/tmp

SSH_CLIENT=9.20.183.84 1846 22

SHELL=/bin/sh

IBM J9 2.6 Technology Enhancements:
RAS Enhancements: javacore contents

ULIMITs

User Limits (in bytes except for NOFILE and NPROC)

type soft limit hard limit

RLIMIT_AS unlimited unlimited

RLIMIT_CORE 0 unlimited

RLIMIT_CPU unlimited unlimited

RLIMIT_DATA unlimited unlimited

RLIMIT_FSIZE unlimited unlimited

RLIMIT_LOCKS unlimited unlimited

RLIMIT_MEMLOCK 32768 32768

RLIMIT_NOFILE 1024 1024

RLIMIT_NPROC 16382 16382

RLIMIT_RSS unlimited unlimited

RLIMIT_STACK 10485760 unlimited

RLIMIT_MSGQUEUE 819200 819200

IBM J9 2.6 Technology Enhancements:
RAS Enhancements: javacore contents

Native memory usage counters
NATIVEMEMINFO subcomponent dump routine
=======================================
JRE: 555,698,264 bytes / 1208 allocations
|
+--VM: 552,977,664 bytes / 856 allocations
| |
| +--Classes: 1,949,664 bytes / 92 allocations
| |
| +--Memory Manager (GC): 547,705,848 bytes / 146 allocations
| | |
| | +--Java Heap: 536,875,008 bytes / 1 allocation
| | |
| | +--Other: 10,830,840 bytes / 145 allocations
| |
| +--Threads: 2,660,804 bytes / 104 allocations
| | |
| | +--Java Stack: 64,944 bytes / 9 allocations
| | |
| | +--Native Stack: 2,523,136 bytes / 11 allocations
| | |
| | +--Other: 72,724 bytes / 84 allocations
| |
| +--Trace: 92,464 bytes / 208 allocations

IBM J9 2.6 Technology Enhancements:
RAS Enhancements: tdump collection

Multi-part TDUMPs

 targeted for the 64bit JVM user

 Existed in Java 6 also, so this should be a refresher
If you specify a template for the IEATDUMP file name, append the &DS token to enable
multiple dumps. The &DS token is replaced by an ordered sequence number, and must be
at the end of the file name. For example, X&DS generates file names in the form X001,
X002, and X003.

 If you specify a template without the &DS token, .X&DS is appended automatically to the end
of your template by the JVM. If your template is too long to append .X&DS, a message is
issued. The message advises that the template pattern is too long and that a default pattern
will be used.

 If you do not specify a template, the default template is used. The default template is:
%uid.JVM.%job.D%y%m%d.T%H%M%S.X&DS

***Dump files MUST be merged before use with IPCS or JDmpview

IBM J9 2.6 Technology Enhancements:
RAS Enhancements: -Xlog

Using –Xlog to control system log messages

-Xlog[:help]|[:<options>]
Sub-options are:
error log all error (JVMxxxnnnE) messages (default)
warn log all warning (JVMxxxnnnW) messages
info log all information (JVMxxxnnnI) messages
config log all configuration messages (there are none yet!)
vital log VM-selected messages, eg for location of dump files
(default)
all log all messages
none turn off logging

Examples
To log error and warning messages
-Xlog:error,warn.
To turn off logging
-Xlog:none.

IBM J9 2.6 Technology Enhancements:
Verbosegc Updates

Verbosegc Format has Changed

 Still XML, but built on a different model

 Old format was transactional and nested

• Worked well for optthruput

• Not so well for optavgpause and gencon

 New format is event driven and flatter

• Provides a better fit for concurrent GC work

Added BONUS! Verbose GC output now contains a listing of arguments
passed to the JVM

 Helpful for diagnosing OOMs, long GC cycles, etc

 Helps when a matching javacore isn't available

Verbosegc: Old Format

Pre R601 trace entry:

<con event="kickoff" timestamp="Mar 22 10:38:49 2011">
<kickoff reason="Kickoff threshold reached" />
</con>
<af type="nursery" id="16" timestamp="Mar 22 10:38:49 2011" intervalms="21.127">
<gc type="scavenger" id="17" totalid="19" intervalms="21.165">
</gc>
<time totalms="6.952" />
</af>
<con event="collection" id="1" timestamp="Mar 22 10:38:49 2011" intervalms="1526.710">
<gc type="global" id="2" totalid="19" intervalms="660.545">
<timesms mark="1.410" sweep="0.437" compact="0.000" total="4.002" />
</gc>
<time totalms="4.080" />
</con>

Verbosegc: New Format

 R601 trace entry:

<concurrent-kickoff id="235" timestamp="2011-03-22T10:40:51.701">
<kickoff reason="threshold reached" targetBytes="933651" thresholdFreeBytes="127933" />
</concurrent-kickoff>
<af-start id="240" totalBytesRequested="65544" timestamp="2011-03-22T10:40:51.705" intervalms="23.097" />
<gc-start id="242" type="scavenge" contextid="241" timestamp="2011-03-22T10:40:51.705">
<gc-op id="244" type="scavenge" timems="3.990" contextid="241" timestamp="2011-03-22T10:40:51.709">
<gc-end id="246" type="scavenge" contextid="241" durationms="4.161" timestamp="2011-03-22T10:40:51.709">
<af-end id="250" timestamp="2011-03-22T10:40:51.709" />
<concurrent-collection-start id="253" timestamp="2011-03-22T10:40:51.719" intervalms="1337.041" />
<gc-start id="254" type="global" contextid="237" timestamp="2011-03-22T10:40:51.719">
<gc-op id="258" type="mark" timems="1.433" contextid="237" timestamp="2011-03-22T10:40:51.722">
<gc-op id="259" type="sweep" timems="0.394" contextid="237" timestamp="2011-03-22T10:40:51.722" />
<gc-end id="260" type="global" contextid="237" durationms="3.277" timestamp="2011-03-22T10:40:51.723">
<concurrent-collection-end id="263" timestamp="2011-03-22T10:40:51.723" />

Inter-language Communication:
Signal Handling with -XCEEHDLR

(31-bit z/OS only)

 New feature in Java 6.0.1

 Requested by Java/COBOL interoperability batch mode environment

 Switches JVM from POSIX to LE Signal Handling for

 SIGBUS

 SIGFPE

 SIGILL

 SIGSEGV

 SIGTRAP

 A condition triggered while executing a JNI component causes the JVM
to convert the Language Environment condition into a Java
ConditionException

 Allows Java application to see/catch LE conditions

 com.ibm.le.conditionhandling.ConditionException exception is thrown

Inter-language Communication
Java/COBOL Inter-Operability Performance

0x

1x

2x

3x

4x

5x

6x

7x

Voi
d

ca
ll

Voi
d

ca
ll –

with
pa

ra
m

et
er

s

Voi
d

ca
ll
–

ca
ch

ed
m

et
ho

dI
D

Voi
d

ca
ll f

ro
m

C

M
ul

til
pl

yI
nt

Fib
ona

cc
i

Fin
dM

ax
Pac

ke
d

(in
t)

Fin
dM

ax
Pac

ke
d

(B
ig

D
ec

im
al
)

Coun
tC

ha
rs

R
ep

la
ce

C
ha

rs

P
e

rf
o

rm
a

n
c

e
c

o
m

p
a

re
d

to
C

O
B

O
L

 COBOL → Java compared to COBOL → COBOL

 Java void() method shows 6x more overhead

 Caching methodID reduces overhead to 4.4x

 Max operation on a set of packed decimals:
• 2x slowdown when Java transformed decimals into ints

• 2.9x slowdown when Java transformed decimals into BigDecimals

 Fibonacci (42 adds in a loop) shows Java performs 40% better than
COBOL

 +96% of the program is
eligible for zAAP offload

 Best practices:

 Do as much work in
Java as possible

 Have as few COBOL ↔
Java transitions as
possible

Inter-language Communication:
JNI Best Practices

 Common performance pitfalls

1. Not caching method IDs, field IDs, and classes

– Avoid redundent calls to FindClass(), GetFieldID(),
GetMethodId(), and GetStaticMethodID()

2. Triggering array copies

– Assume arrays are buffered, hence be precise about which elements you
really need to avoid needless copying

3. Reaching back instead of passing parameters

– When possible, flatten object fields into parameters of call. Avoid using
JNI services to get to object fields

4. Choosing the wrong boundary between native and Java code

– Assume Native Java call overhead 10x slower than Native  Native or
Java Java

5. Using many local references without informing the JVM

See http://www.ibm.com/developerworks/java/library/j-jni/

Other changes of interest

 Service has requested a TDUMP be captured by default
on OutOfMemory exceptions.

Jmpview no longer requires TDUMPs to be pre-processed
by jextract.

 This eliminates the requirement to use a jvm build level
matching that captured within the dump.

 Support has been backported to more current versions of
Java6 and Java5, but requires using an R601 build level to
execute jdmpview. Support exists beginning with:
• Java6 SR9

• Java5 SR12

Documentation

Download a copy of the

“ IBM SDK Java Technology Edition Version 6 Supplement”
for more details:

http://public.dhe.ibm.com/common/ssi/ecm/
en/zsl03118usen/ZSL03118USEN.PDF

R601 31-bit:
http://www-03.ibm.com/systems/z/os/zos/tools/
java/products/sdk601_31.html

R601 64-bit:
http://www-03.ibm.com/systems/z/os/zos/tools/

java/products/sdk601_64.html

© Copyright IBM Corporation 2011. All rights reserved. The information contained in these materials is provided for informational purposes only, and is provided AS IS without warranty of any kind,
express or implied. IBM shall not be responsible for any damages arising out of the use of, or otherwise related to, these materials. Nothing contained in these materials is intended to, nor shall have
the effect of, creating any warranties or representations from IBM or its suppliers or licensors, or altering the terms and conditions of the applicable license agreement governing the use of IBM
software. References in these materials to IBM products, programs, or services do not imply that they will be available in all countries in which IBM operates. Product release dates and/or capabilities
referenced in these materials may change at any time at IBM’s sole discretion based on market opportunities or other factors, and are not intended to be a commitment to future product or feature
availability in any way. IBM, the IBM logo, Rational, the Rational logo, Telelogic, the Telelogic logo, and other IBM products and services are trademarks of the International Business Machines
Corporation, in the United States, other countries or both. Other company, product, or service names may be trademarks or service marks of others.

