
IBM Java 6.0.1 in zEnterprise
Technology Update

Session 09769

Ken Irwin, IBM GTS, Poughkeepsie, New York
Marcel Mitran, IBM SWG, Markham, Canada

Theresa Tai, IBM STG, Poughkeepsie, New York

IBM J9 2.6 Technology Innovation Highlight
and z/OS Value-add

 IBM Strategy Initiative on Java

 IBM J9 2.6 Technology Innovation Highlight

 z/OS value-add

 The newly announced z/OS V1.13 Batch Runtime

 Maximizing zAAP, zIIP, and zAAP on zIIP Investment

 IBM Java Roadmap and Future

 SDK V6.x, V5.x and V1.4.2 Currency

 System zEnterprise z196 New Workload Video

 http://www.centerline.net/review/#/3332_B

IBM and Java

 Java is critically important to IBM
 Fundamental infrastructure for IBM’s software portfolio

 WebSphere, Lotus, Tivoli, Rational, Information Management (IM)

 CICS, IMS and DB2

 IBM is investing strategically for Java in
Virtual Machines
 As of Java 5.0, single JVM support (JME, JSE, JEE)

 New technology base (J9/TR Compiler) on which to deliver
improved performance, reliability, serviceability

 IBM also invests in, and supports public
innovation in Java
 Eclipse, Apache (XML, Aries, Derby, Geronimo, Harmony,

Tuscany, Hadoop …)

 Broad participation in relevant open standards (JCP, OSGi)

IBM J9 2.6 Technology Innovation
System zEnterprise 196 and Java6.0.1

 Leveraging 70+ new HW instructions

 HW Optimization Technology for Java

 Reducing pressure on instruction cache and data cache

 New architectural facilities designed for scalability, and concurrency

 General optimizer and codegen improvements

 New GC Balanced Policy for large heap-intensive workloads

 Significant just-in-time (JIT) compiler performance enhancements

 z/OS Java Unique Security Enhancements

 Integrated Cryptographic Service Facility (ICSF) exception handling

 New RAS features and new signal handling capability

 Enhancements to JZOS

It’s about performance and further improve the economics of running
mission critical workloads on zEnterprise

Executive Summary

J9 R2.6 Virtual Machine
 Significant enhancements to JIT

optimization technology

 z196 exploitation of instructions and
new pipeline

 New Balanced GC policy to reduce
max pause times

z196 and Java6.0.1: Engineered Together

 Up-to 2.1x improvement to Java throughput

 Reduced footprint

 Tighter integration with z/OS facilities

 Improved responsiveness in application
behavior

Performance
 2.1x improvement to multi-

threaded workload

 1.93x improvement to CPU-
intensive workload

z/OS Unique Enhancements
 JZOS 2.4.0

 z/OS Java unique security
enhancements

Java Execution Environments
and Interoperability

 IBM Java Execution Offerings

 Transactional/Interactive
• WebSphere for z/OS (WAS z/OS)

• WebSphere Process Server for z/OS
(WPS) for SOA BPM

• JCICS

• IMS Java

• DB2 Stored Procedures

 Batch Oriented
• WebSphere Compute Grid (WAS-CG)

• WAS/JEE runtime extensions

• JZOS component of z/OS SDK
• JES/JSE-based environment

Open Source or non-IBM vendor
Application Server and
Frameworks

 Tomcat, JBoss

 iBatis, Hibernate, Spring

 Ant

 COBOL/Native Interoperability

 COBOL Invoke maps to JNI

 RDz and JZOS** have tooling to
map COBOL copy books to Java
classes

 JCICS

 IMS Java, JMP/JBP

 WAS CG, WOLA

 etc
* See http://www-01.ibm.com/common/ssi/cgi-bin/ssialias?subtype=ca&infotype=an&supplier=897&letternum=ENUS211-252

** Alphaworks only, and hence currently un-supported

Capitalize on Pre-existing Assets, Artifacts, Processes,
Core Competencies and Performance Strengths.

z/OS – System z Java Extensions

All SDKs support the ‘standards’, Java on z/OS
extends the SDK
Access to z/OS services
Access to all types of data
Access under control of z/OS security mechanisms
 Integration into existing operational infrastructure

Services available in JEE and JSE environments under the

restrictions of the container.

SDK
z/OS

Extensions

SDK
Base

Function

System specific extension allow you to write robust middleware and
applications that integrate with traditional z/OS operating environment
Allow for maintaining platform independent design development.
Platform specific implementations when required
Allows for operational and resource optimization

e.g. JAAS wrapper of SAF (RACF, ACF2, or TopSecret), Traditional OS dataset
access, Cryptographic hardware (Cards and CPACF), z/OS Console (modify and
messages), z/OS system logger, JES job submission, DFSORT, SMF, etc.

The New z/OS Batch Runtime Environment

 z/OS V1.13 "real-time batch" support

 A new z/OS base component

 Enable concurrent batch and online data access

 Provides the framework for
• Java-to-COBOL interoperability

• Transactional updates to DB2®

• Sharing database connections between Java and COBOL

 New Java-COBOL interoperability capabilities are designed
to enable re-use valuable COBOL assets by developing new
and/or enhancing existing batch applications with Java

 Example - use Java subroutines directly in lieu of Java stored
procedures

 Leverage Specialty Engine zAAP

Getting the Most out of
IBM zAAP, zIIP, zAAPzIIP with zEnterprise

 Significantly more productive with zEnterprise class
of processors

 You should expect lower utilization on the same workloads

 Additional Performance and Throughput Gains with z196 and
the new z114

 z/OS Management Facility (z/OSMF) exploitation of
zAAP and zIIP (zAAPzIIP) engines

 Parts of z/OSMF use the z/OS CIM Server

 Java Workloads eligible for zAAP, or zIIP (with the zAAP on zIIP
capability introduced with z/OS V1.11)

 New Batch Runtime with z/OS V1.13

IBM Java Road Map

Page Intentionally Left Blank

IBM Java SDKs Currency

 Java Technology Edition V6.0.1 Build Level April 19, 2011 for z/OS
 31-bit and 64-bit SDK IBM J9 2.6 VM, a new level of JZOS (2.4.0),

enhancements to z/OS Java security, and exploits z196 instructions. The
existing Version 6 Release 0 Modification 0 remains orderable and in service

 31-bit - PTFs UK68991 and UK68998 / APARs PM40891 and PM40892

 64-bit - PTFs UK69000 and UK69001 / APARs PM40894 and PM40895

 Java Technology Edition V6.0 Build Level June 25, 2011 for z/OS
 31-bit - PTF UK65180/APAR PM33607/SDK6 SR9 FP1

 64-bit - PTF UK65285/APAR PM33609/SDK6 SR9 FP1

 Java Technology Edition V5.0 Build Level June 27, 2011 for z/OS

 31-bit - PTF UK69795/APAR PM43607/SDK5 SR12 FP5

 64-bit - PTF UK69796/APAR PM43609/SDK5 SR12 FP5

 Java Technology Edition V1.4 Build Level March 3, 2011 for z/OS
 PTF UK66018/APAR PM35678/SDK1.4.2 SR13 Fixpack 9

 No longer orderable

 Has been withdrawn from Service effective September 30, 2011

IBM Java Performance on zEnterprise

JVM Architectural Overview

Java Application CodeProfilersDebugger

Trace & Dump Engines

Java Native Interface (JNI)

Harmony

Classes

JSE6

Classes

JSE5

Classes

JVMTI User
Natives

GC / JIT / Class Lib. Natives

Core VM (Interpreter, Verifier, Stack Walker)

Port Library (Files, Sockets, Memory)

Thread Library

PPC-32
PPC-64

AIX

zArch-31
zArch-64

x86-32
x86-64

zArch-31
zArch-64

PPC-32
PPC-64

x86-32
x86-64

z/OSWindowsLinuxOperating
Systems

Java Runtime
Environment
e.g. J9 R26

Java API
e.g. Java6

User Code

= Core VM

= VM-aware

= Java Platform API

= User Code

Java 6.0.1:

• Also referred to as Java6 R26, ships with WAS8 across platforms, or standalone on z/OS

• Fully compatible/compliant Java6 (JSE6)

• Includes new J9 R26 JRE (replacing J9 R24 in Java6.0.0)

• Transparent z196 and new optimization exploitation

• New balanced GC policy

IBM Java Runtime Environment

 IBM’s implementation of Java 5 and Java 6 are built with IBM J9
Virtual Machine and IBM Testarossa JIT Compiler technology

• Independent clean-room JVM runtime & JIT compiler

 Combines best-of breed from embedded, development and server
environments… from a cell-phone to a mainframe!

• Lightweight flexible/scalable technology

• World class garbage collection – gencon, balanced GC policies

• Startup & Footprint - Shared classes, Ahead-of-time (AOT) compilation

• 64-bit performance - Compressed references & Large Pages

• Deep System z exploitation – z196/z10/z9/z990 exploitation

• Cost-effective for z - zAAP Ready!

 Millions of instances of J9/TR compiler

IBM Testarossa JIT
Deep System z Exploitation

Out-of-Order/Super-scalar Instruction Scheduler
 z10/z9/z990 are in order superscalar dual pipelines, can dispatch up

to 3 instrs/cycle

 z196 pipeline is OOO, permits 3 inst/group

Platform Tuned Optimizations
 idiom recognition, dynamic literal pool, etc

New Hardware Facility Exploitation
 z196: high-word, non-destructive, interlock,

conditional load/store

 z10: traps, compare-and-branch, pre-fetch,
Decimal Floating Point, etc

 z9: extended immediate support

 z990: long displacement support

IBM J9 2.6 and z196

J9 R26: JRE for z196
 Reducing pressure on the data/instruction cache

 Enables better exploitation of new OOO compute bandwidth

 Mitigates effects of cache latencies for leveraging core speed

 Concurrency improvements
 Better scalability

 General optimizer and codegen improvements
 Reduced path-length

z196: Hardware for Java
 New Out-Of-Order pipeline design

 New larger cache structure

 Higher clock speed (~5.2GHz)

Performance on z/OS:
CPU-Intensive Benchmark

93% Aggregate
improvement

 14% Java 6.0.1
improvement

 70% Hardware
improvement

(Controlled measurement environment, results may vary)

Performance on z/OS:
Multi-threaded Benchmark

2.1x Aggregate
improvement

 16% Java 6.0.1
improvement

 56% Hardware
improvement

 17% z/OS 1.12
improvement**

(Controlled measurement environment, results may vary)

**using IEASYSxx new option TIMESLICE=64

J9R26

J9R24

z/OS Java SDK 6.0.1 Performance:
64 Bit Multi-threaded Benchmark

2.17x Aggregate
Software
improvement

 16% Java 6.0.1
improvement

 39% Java 6 SR8
versus
Java 6 GM
improvement

 35% Java 6 GM
versus
Java 5 SR5

(Controlled measurement environment, results may vary)

J9R26

J9R24

J9R23

z/OS Java SDK 6.0.1 Performance
Aggregate HW and SDK Improvement z10, z196, Java6 to Java6.0.1

~7x

Improvement
from z10, z196,
Java6 and
Java6.0.1

(Controlled measurement environment, results may vary)

z/OS Multi-Threaded 64 Bit Java Workload

0

10

20

30

40

50

60

70

80

90

1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Threads

T
h

ro
u

g
h

p
u

t

z196 SDK 6.0.1
J9 2.6 LP CR

z10 SDK 6 SR4
J9 2.4 LP CR

z10 SDK 6 GM
J9 2.4

z9 Java 5 SR5
J9 2.3

J9R26

J9R24

J9R23

Note: z9 (J9 R23) is the base for the aggregated HW and SDK performance improvements

Performance – IMS JMP

IMS JMP ETR Improvements

Java5, Java6 and Java601

3900

6992
7518

191

608

930

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Java 5 (2009) Java 6 (2010) Java 6.0.1

Java Release (year)

T
h

ro
u

g
h

p
u

t

(b
ig

g
e
r

is
b

e
tt

e
r)

zAAP

CP

(Controlled measurement environment, results may vary) z196™ – z/OS V1.12

81%

11%

2 GCP + 2 zAAP

J9R26J9R24J9R23

Comparing Java Throughput on CICS 4.2 with
CICS 4.1

 CICS 4.2 JVMPOOL
and JVMSERVER use
64-bit Java 6.0.1
relieving 31-bit storage
constraint

 ~17% improvement to
throughput with CICS
4.2/Java 6.0.1

 JVMSERVER slightly
more expensive than
JVMPOOL in CPU

usage but requires
less memory

 All configurations
scale well

Throughput for Compure Intensive Benchmark

0

5000

10000

15000

20000

25000

30000

35000

40000

0 20 40 60 80

threads or TCBs

th
ro

u
g

h
p

u
t

(t
ra

n
s

p
e

r
s

)

4 .2 JVMPOOL

4.2 JVMSERVER

4.1 JVMPOOL

J9R26

J9R24

100%

143%

164%

100%

143%

176%

0%

25%

50%

75%

100%

125%

150%

175%

200%

Version 7 on z10 Version 7 on z196 Verison 8 on z196

R
e

la
ti
ve

T
h

ro
u

g
h

p
u

t

WAS on z/OS Version 8 on z196 Hardware
DayTrader 2.0

Local Data Base

Remote Data Base

Performance on z/OS: WAS on z/OS

(Controlled measurement environment, results may vary)

 z196 hardware measured 43% more throughput for local and remote database configurations

 Version 8 improved throughput of 2-tier configurations by another 15% for an aggregate benefit of 64%

 Version 8 improved throughput of 3-tier configurations by another 23% for an aggregate benefit of 76%

J9R26J9R24J9R24

Performance on z/OS: WAS on z/OS

(Controlled measurement environment, results may vary)

WAS on z/OS Version 8 on z196 Hardware

Web Services

100%

134%

180%

100%

140%

164%

0%

25%

50%

75%

100%

125%

150%

175%

200%

Version 7 on z10 Version 7 on z196 Verison 8 on z196

R
e
la

ti
v
e

T
h
ro

u
g
h
p
u
t

3k/3k Payload

10k/10k Payload

 z196 hardware measured 34% more throughput for small payload sizes (3kin/3kout) and 40% more for
typical payload sizes (10kin/10kout) than z10 hardware

 Version 8 throughput improved over Version 7 by another 34% with the 3k/3k payload and 17% with the
10k/10k payload for and aggregate hardware and software benefit of +80% and +64% respectively

• Improved JAXB parsing

J9R24J9R24 J9R26

Performance on z/OS: WAS on z/OS

(Controlled measurement environment, results may vary)

WAS on z/OS Version 8

Startup Time and Memory Footprint

100%

78%

92%
95%

0%

25%

50%

75%

100%

125%

Version 7 Elapsed Time CPU Time Memory Footprint

 Version 8 server startup time has been reduced by 22%, in elapsed time and 8% in CPU time compared
to Version 7

• Larger shared class cache reduced class load times
• Optimized annotation scanning
• Only delegate class loading to the JDK class loader instead of all class loaders for JDK classes

 Version 8 memory footprint has been reduced by 5%
• Reductions in JVM native memory as well as class memory

J9R26 J9R26 J9R26J9R24

Websphere Application Server (WAS)
DayTrader Improvements

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Throughput Start-up Elapsed Time Start-up CPU Tim e

R
e
la

ti
v

e
Im

p
ro

v
e
m

e
n

t

W AS6.0 Normalized W AS 6.1/SDK5 vs. W AS 6.0/SDK1.4.2

W AS 7/SDK6 vs. W AS 6.1/SDK5 W AS8/SDK601 vs. WAS7/SDK6

Performance – WAS on zOS
(WAS6.0 - WAS6.1 - WAS7.0 - WAS8.0 DayTrader on z/OS)

Bigger is better
Smaller
is better

Smaller
is better

(Controlled measurement environment, results may vary)

J9R26

J9R24

J9R23

Performance on z/OS: WAS on z/OS

(Controlled measurement environment, results may vary)

History of WebSphere on z/OS Hardware/Software Performance

1.0

1.6

2.2

3.1

3.9

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Version 6.1 on z9 Version 6.1 on z10 Version 7.0 on z10 Version 7.0 on z196 Version 8.0 on z196

A
g
g
re

g
a
te

P
e
rf
o
rm

a
n
c
e

Hardware Improvement

Software Improvement

+57%

+43%

+40%

+23%

 This chart shows a history of improvements made from zSeries hardware (from z9 to z196) and software (from V6.1 to
V8.0). The data is from measurements done using the DayTrader EJB workload.

 The chart shows an aggregate performance improvement of almost 4x moving from WAS V6.1 on a z9 to
WAS V8.0 on a z196.

 The hardware component of this increase is about 2.25x (1.57 x 1.43)

 The software component is about 1.72x (1.40 x .123)

J9R23J9R23 J9R24 J9R24 J9R26

z/Linux Java6 R26 Performance:
64 Bit Multi-threaded Benchmark

(Controlled measurement environment, results may vary)

Linux on z-multithreaded 64 Bit Java workload

12-Way System z196

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

1 2 4 6 8 10 12 14 16 18 20 22 24

Threads

T
h

ro
u

g
h

p
u

t

z196 SDK 6 FP1
J9 2.6 LP CR

z196 SDK 6 SR8
J9 2.4 LP CR

z196 Java 6 GM
J9 2.4

z196 SDK 5 SR5
J9 2.3

2.7x Aggregate
Software
improvement

 42% Java6R26 vs
Java6R24
improvement

 42% Java6R24 SR9 vs
Java6R24 GM

 35% Java 6 GM versus

Java 5 SR5

J9R26

J9R24

J9R23

Performance – WAS8.0 on zLinux

(Controlled measurement environment, results may vary)

WAS on zLinux Version 8 on z196 Hardware

DayTrader 2.0

100%

137%

160%

0%

25%

50%

75%

100%

125%

150%

175%

200%

Version 7 on z10 Version 7 on z196 Verison 8 on z196

R
e
la

ti
v
e

T
h
ro

u
g
h
p
u
t

Remotel Data Base

 Upgrading from z10 to z196 improved throughput by 37% using our DayTrader 2.0 EJB benchmark.

 Additionally, upgrading to WAS V8.0 improved performance by another 17%. This increase is a result of
improvements to the following areas:

 JVM and JIT optimizations

 OpenJPA code paths

 The combine hardware and software improvement is 60%.

J9R24J9R24 J9R26

Performance – WAS8.0 on zLinux

(Controlled measurement environment, results may vary)

WAS on zLinux Version 8 on z196 Hardware

Web Services

100%

115%

139%

100%

135%

169%

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

Version 7 on z10 Version 7 on z196 Verison 8 on z196

R
e
la

ti
v
e

T
h
ro

u
g
h
p
u
t

3k/3k Payload

10k/10k Payload

 Upgrading from z10 to z196 improved throughput by as much as 35% using our SOABench webservices
benchmark (15% for the 3k/3k payload and 35% for the 10k/10k payload).

 Additionally, upgrading to WAS V8.0 improved performance by another 21% for the 3k/3k payload and 25%
for the 10k/10k payload. This increase is a result of improvements to the following areas:

 JVM and JIT optimizations

 JAXB fastpath optimizations

 The combine hardware and software improvement is 39% for the 3k/3k case and 69% in the 10k/10k case.

J9R24J9R24 J9R26

IBM Java Consumability and Serviceability

R601 z/OS Unique functional enhancements

JZOS 2.4.0

 Enables the submission of jobs to the MVS internal reader
and retrieval of the submitted JOB ID

 Text, record, and binary JCL will be supported.

 The MVS internal reader attributes LRECL, RECFM, and
Class will be configurable from this Java class.

 Enhances the zlogstream class to support

 IXGBRWSE (read) and IXGDELT (delete)

 InputStream/OutputStream Java wrappers

 Added the method ZFile.readDSCBChain() to support

 Reading all of the DSCBs associated with a dsn/volume

 Extended access volumes (Format-8 and Format-9
DSCBs.)

 Adds a new package com.ibm.jzos.wlm with selected z/OS
Workload Manager (WLM) APIs

 Removes all JRIO code dependencies

 JRIO is deprecated in z/OS V6.0.1 products

R601 z/OS Unique functional enhancements

z/OS Java Unique Security Enhancements

 IBMJCECCA provider support for AES Secure Keys

 RAS: Provide Enhanced ICSF Exception Handling in
IBMJCECCA

IBM J9 2.6 Technology Enhancements:
Garbage Collection: Balanced Policy

Improved responsiveness in application behavior

 Reduced maximum pause times to achieve more consistent behavior

 Incremental result-based heap collection targets best ROI areas of the heap

 Native memory aware approach reduces non-object heap consumption

Next generation technology expands platform exploitation possibilities

 Virtualization – Group heap data by frequency of access, direct OS paging
decisions

 Dynamic reorganization of data structures to improve memory hierarchy
utilization (performance)

Recommended deployment scenarios

 Large (>4GB) heaps

 Frequent global garbage collections

 Excessive time spent in global compaction

 Relatively frequent allocation of large (>1MB) arrays

Input welcome: Help set directions by telling us your needs

IBM J9 2.6 Technology Enhancements:
GC Policy Changes

Effective with Java R601

 Xgcpolicy: gencon is the default GC Policy

 Applies to both 31- and 64-bit JVMs

Benefits

 Long-lived objects are handled differently than short-lived objects

 Applications with many short-lived objects can see shorter pause times
(better performance) while maintaining good throughput

Considerations

 Assess performance against current gcpolicy in use

 Consider returning to previous gcpolicy if needed

Other changes

 The subpool policy has been removed

 -Xgcpolicy:subpool is now an alias for -Xgcpolicy:optthruput

IBM J9 2.6 Technology Enhancements:
GenCon Policy Tuning

Gencon Defaults

 Default split is 25% newspace, 75% oldspace

 Both new and old space can grow and shrink dynamically

Old and New space size is definable

 -Xmns / -Xmnx

 -Xmos / -Xmox

Tuning Considerations

 In a fixed heap (ie -Xms = -Xmx), both areas are fixed in size

 Too small a nursery can cause
too many local GCs
premature tenuring >> more frequent Global GCs

 Too large a nursery can cause
expensive local GCs
smaller tenure space >> more frequent Global Gcs

 The tuning goal is to minimize the object survival rate

 If the rate is consistently too high, consider another policy

 Consider using the GCMV tool to help

IBM J9 2.6 Technology Enhancements:
RAS Enhancements

JVM Dump Support

 Environment Variables and ULIMITs included in javacores

 Native memory usage counters in javacore and from core dumps via DTFJ

 Multi-part TDUMPs on zOS 64

JVM Trace Support Improvements

 -Xtrace

More internal tracepoints created
New javastack and ceedump trigger points added

JVM Logging Improvements

 -Xlog

New with J9 2.6 all JVM error messages (JVMxxxxnnnE) plus specific information
messages JVMDUMP006I, JVMDUMP032I and JVMDUMP033I are written to the
system log by default.
The –Xlog option has been enhanced to provide controlled selection of
Message routing to the system log.

IBM J9 2.6 Technology Enhancements:
RAS Enhancements: javacore contents

Environment Variables

--

_CXX_WORK_SPACE=(32000,(150,150))

_CXX_PMSGS=EDCPMSGE

MAIL=/usr/mail/CHAMBER

_CC_CNAME=CCNDRVR

PATH=/u/sovbld/bldsys:/usr/local/perl/bin:/u/java/bin:/bin:/usr/sbin:/u/cham
b....

_C89_WORK_SPACE=(32000,(150,150))

_CXX_WORK_UNIT=SYSDA

_CXX_INCDIRS=/usr/include //DD:SYSLIB
//'PP.ADLE370.ZOS180.SCEEH.NET.H‘………

_C89_PNAME=EDCPRLK

TMPDIR=/tmp

SSH_CLIENT=9.20.183.84 1846 22

SHELL=/bin/sh

IBM J9 2.6 Technology Enhancements:
RAS Enhancements: javacore contents

ULIMITs

User Limits (in bytes except for NOFILE and NPROC)

type soft limit hard limit

RLIMIT_AS unlimited unlimited

RLIMIT_CORE 0 unlimited

RLIMIT_CPU unlimited unlimited

RLIMIT_DATA unlimited unlimited

RLIMIT_FSIZE unlimited unlimited

RLIMIT_LOCKS unlimited unlimited

RLIMIT_MEMLOCK 32768 32768

RLIMIT_NOFILE 1024 1024

RLIMIT_NPROC 16382 16382

RLIMIT_RSS unlimited unlimited

RLIMIT_STACK 10485760 unlimited

RLIMIT_MSGQUEUE 819200 819200

IBM J9 2.6 Technology Enhancements:
RAS Enhancements: javacore contents

Native memory usage counters
NATIVEMEMINFO subcomponent dump routine
=======================================
JRE: 555,698,264 bytes / 1208 allocations
|
+--VM: 552,977,664 bytes / 856 allocations
| |
| +--Classes: 1,949,664 bytes / 92 allocations
| |
| +--Memory Manager (GC): 547,705,848 bytes / 146 allocations
| | |
| | +--Java Heap: 536,875,008 bytes / 1 allocation
| | |
| | +--Other: 10,830,840 bytes / 145 allocations
| |
| +--Threads: 2,660,804 bytes / 104 allocations
| | |
| | +--Java Stack: 64,944 bytes / 9 allocations
| | |
| | +--Native Stack: 2,523,136 bytes / 11 allocations
| | |
| | +--Other: 72,724 bytes / 84 allocations
| |
| +--Trace: 92,464 bytes / 208 allocations

IBM J9 2.6 Technology Enhancements:
RAS Enhancements: tdump collection

Multi-part TDUMPs

 targeted for the 64bit JVM user

 Existed in Java 6 also, so this should be a refresher
If you specify a template for the IEATDUMP file name, append the &DS token to enable
multiple dumps. The &DS token is replaced by an ordered sequence number, and must be
at the end of the file name. For example, X&DS generates file names in the form X001,
X002, and X003.

 If you specify a template without the &DS token, .X&DS is appended automatically to the end
of your template by the JVM. If your template is too long to append .X&DS, a message is
issued. The message advises that the template pattern is too long and that a default pattern
will be used.

 If you do not specify a template, the default template is used. The default template is:
%uid.JVM.%job.D%y%m%d.T%H%M%S.X&DS

***Dump files MUST be merged before use with IPCS or JDmpview

IBM J9 2.6 Technology Enhancements:
RAS Enhancements: -Xlog

Using –Xlog to control system log messages

-Xlog[:help]|[:<options>]
Sub-options are:
error log all error (JVMxxxnnnE) messages (default)
warn log all warning (JVMxxxnnnW) messages
info log all information (JVMxxxnnnI) messages
config log all configuration messages (there are none yet!)
vital log VM-selected messages, eg for location of dump files
(default)
all log all messages
none turn off logging

Examples
To log error and warning messages
-Xlog:error,warn.
To turn off logging
-Xlog:none.

IBM J9 2.6 Technology Enhancements:
Verbosegc Updates

Verbosegc Format has Changed

 Still XML, but built on a different model

 Old format was transactional and nested

• Worked well for optthruput

• Not so well for optavgpause and gencon

 New format is event driven and flatter

• Provides a better fit for concurrent GC work

Added BONUS! Verbose GC output now contains a listing of arguments
passed to the JVM

 Helpful for diagnosing OOMs, long GC cycles, etc

 Helps when a matching javacore isn't available

Verbosegc: Old Format

Pre R601 trace entry:

<con event="kickoff" timestamp="Mar 22 10:38:49 2011">
<kickoff reason="Kickoff threshold reached" />
</con>
<af type="nursery" id="16" timestamp="Mar 22 10:38:49 2011" intervalms="21.127">
<gc type="scavenger" id="17" totalid="19" intervalms="21.165">
</gc>
<time totalms="6.952" />
</af>
<con event="collection" id="1" timestamp="Mar 22 10:38:49 2011" intervalms="1526.710">
<gc type="global" id="2" totalid="19" intervalms="660.545">
<timesms mark="1.410" sweep="0.437" compact="0.000" total="4.002" />
</gc>
<time totalms="4.080" />
</con>

Verbosegc: New Format

 R601 trace entry:

<concurrent-kickoff id="235" timestamp="2011-03-22T10:40:51.701">
<kickoff reason="threshold reached" targetBytes="933651" thresholdFreeBytes="127933" />
</concurrent-kickoff>
<af-start id="240" totalBytesRequested="65544" timestamp="2011-03-22T10:40:51.705" intervalms="23.097" />
<gc-start id="242" type="scavenge" contextid="241" timestamp="2011-03-22T10:40:51.705">
<gc-op id="244" type="scavenge" timems="3.990" contextid="241" timestamp="2011-03-22T10:40:51.709">
<gc-end id="246" type="scavenge" contextid="241" durationms="4.161" timestamp="2011-03-22T10:40:51.709">
<af-end id="250" timestamp="2011-03-22T10:40:51.709" />
<concurrent-collection-start id="253" timestamp="2011-03-22T10:40:51.719" intervalms="1337.041" />
<gc-start id="254" type="global" contextid="237" timestamp="2011-03-22T10:40:51.719">
<gc-op id="258" type="mark" timems="1.433" contextid="237" timestamp="2011-03-22T10:40:51.722">
<gc-op id="259" type="sweep" timems="0.394" contextid="237" timestamp="2011-03-22T10:40:51.722" />
<gc-end id="260" type="global" contextid="237" durationms="3.277" timestamp="2011-03-22T10:40:51.723">
<concurrent-collection-end id="263" timestamp="2011-03-22T10:40:51.723" />

Inter-language Communication:
Signal Handling with -XCEEHDLR

(31-bit z/OS only)

 New feature in Java 6.0.1

 Requested by Java/COBOL interoperability batch mode environment

 Switches JVM from POSIX to LE Signal Handling for

 SIGBUS

 SIGFPE

 SIGILL

 SIGSEGV

 SIGTRAP

 A condition triggered while executing a JNI component causes the JVM
to convert the Language Environment condition into a Java
ConditionException

 Allows Java application to see/catch LE conditions

 com.ibm.le.conditionhandling.ConditionException exception is thrown

Inter-language Communication
Java/COBOL Inter-Operability Performance

0x

1x

2x

3x

4x

5x

6x

7x

Voi
d

ca
ll

Voi
d

ca
ll –

with
pa

ra
m

et
er

s

Voi
d

ca
ll
–

ca
ch

ed
m

et
ho

dI
D

Voi
d

ca
ll f

ro
m

C

M
ul

til
pl

yI
nt

Fib
ona

cc
i

Fin
dM

ax
Pac

ke
d

(in
t)

Fin
dM

ax
Pac

ke
d

(B
ig

D
ec

im
al
)

Coun
tC

ha
rs

R
ep

la
ce

C
ha

rs

P
e

rf
o

rm
a

n
c

e
c

o
m

p
a

re
d

to
C

O
B

O
L

 COBOL → Java compared to COBOL → COBOL

 Java void() method shows 6x more overhead

 Caching methodID reduces overhead to 4.4x

 Max operation on a set of packed decimals:
• 2x slowdown when Java transformed decimals into ints

• 2.9x slowdown when Java transformed decimals into BigDecimals

 Fibonacci (42 adds in a loop) shows Java performs 40% better than
COBOL

 +96% of the program is
eligible for zAAP offload

 Best practices:

 Do as much work in
Java as possible

 Have as few COBOL ↔
Java transitions as
possible

Inter-language Communication:
JNI Best Practices

 Common performance pitfalls

1. Not caching method IDs, field IDs, and classes

– Avoid redundent calls to FindClass(), GetFieldID(),
GetMethodId(), and GetStaticMethodID()

2. Triggering array copies

– Assume arrays are buffered, hence be precise about which elements you
really need to avoid needless copying

3. Reaching back instead of passing parameters

– When possible, flatten object fields into parameters of call. Avoid using
JNI services to get to object fields

4. Choosing the wrong boundary between native and Java code

– Assume Native Java call overhead 10x slower than Native Native or
Java Java

5. Using many local references without informing the JVM

See http://www.ibm.com/developerworks/java/library/j-jni/

Other changes of interest

 Service has requested a TDUMP be captured by default
on OutOfMemory exceptions.

Jmpview no longer requires TDUMPs to be pre-processed
by jextract.

 This eliminates the requirement to use a jvm build level
matching that captured within the dump.

 Support has been backported to more current versions of
Java6 and Java5, but requires using an R601 build level to
execute jdmpview. Support exists beginning with:
• Java6 SR9

• Java5 SR12

Documentation

Download a copy of the

“ IBM SDK Java Technology Edition Version 6 Supplement”
for more details:

http://public.dhe.ibm.com/common/ssi/ecm/
en/zsl03118usen/ZSL03118USEN.PDF

R601 31-bit:
http://www-03.ibm.com/systems/z/os/zos/tools/
java/products/sdk601_31.html

R601 64-bit:
http://www-03.ibm.com/systems/z/os/zos/tools/

java/products/sdk601_64.html

© Copyright IBM Corporation 2011. All rights reserved. The information contained in these materials is provided for informational purposes only, and is provided AS IS without warranty of any kind,
express or implied. IBM shall not be responsible for any damages arising out of the use of, or otherwise related to, these materials. Nothing contained in these materials is intended to, nor shall have
the effect of, creating any warranties or representations from IBM or its suppliers or licensors, or altering the terms and conditions of the applicable license agreement governing the use of IBM
software. References in these materials to IBM products, programs, or services do not imply that they will be available in all countries in which IBM operates. Product release dates and/or capabilities
referenced in these materials may change at any time at IBM’s sole discretion based on market opportunities or other factors, and are not intended to be a commitment to future product or feature
availability in any way. IBM, the IBM logo, Rational, the Rational logo, Telelogic, the Telelogic logo, and other IBM products and services are trademarks of the International Business Machines
Corporation, in the United States, other countries or both. Other company, product, or service names may be trademarks or service marks of others.

